Source code for adam.casadi.computations

# Copyright (C) 2021 Istituto Italiano di Tecnologia (IIT). All rights reserved.
# This software may be modified and distributed under the terms of the
# GNU Lesser General Public License v2.1 or any later version.

import casadi as cs
import numpy as np
from typing import Union

from adam.casadi.casadi_like import SpatialMath
from adam.core import RBDAlgorithms
from adam.core.constants import Representations
from adam.model import Model, URDFModelFactory


[docs] class KinDynComputations: """This is a small class that retrieves robot quantities represented in a symbolic fashion using CasADi in mixed representation, for Floating Base systems - as humanoid robots. """ def __init__( self, urdfstring: str, joints_name_list: list = None, root_link: str = "root_link", gravity: np.array = np.array([0.0, 0.0, -9.80665, 0.0, 0.0, 0.0]), f_opts: dict = dict(jit=False, jit_options=dict(flags="-Ofast"), cse=True), ) -> None: """ Args: urdfstring (str): either path or string of the urdf joints_name_list (list): list of the actuated joints root_link (str, optional): the first link. Defaults to 'root_link'. """
[docs] math = SpatialMath()
[docs] factory = URDFModelFactory(path=urdfstring, math=math)
[docs] model = Model.build(factory=factory, joints_name_list=joints_name_list)
[docs] self.rbdalgos = RBDAlgorithms(model=model, math=math)
[docs] self.NDoF = self.rbdalgos.NDoF
[docs] self.g = gravity
[docs] self.f_opts = f_opts
[docs] def set_frame_velocity_representation( self, representation: Representations ) -> None: """Sets the representation of the velocity of the frames Args: representation (Representations): The representation of the velocity """ self.rbdalgos.set_frame_velocity_representation(representation)
[docs] def mass_matrix_fun(self) -> cs.Function: """Returns the Mass Matrix functions computed the CRBA Returns: M (casADi function): Mass Matrix """ base_transform = cs.SX.sym("H", 4, 4) joint_positions = cs.SX.sym("s", self.NDoF) [M, _] = self.rbdalgos.crba(base_transform, joint_positions) return cs.Function( "M", [base_transform, joint_positions], [M.array], self.f_opts )
[docs] def centroidal_momentum_matrix_fun(self) -> cs.Function: """Returns the Centroidal Momentum Matrix functions computed the CRBA Returns: Jcc (casADi function): Centroidal Momentum matrix """ base_transform = cs.SX.sym("H", 4, 4) joint_positions = cs.SX.sym("s", self.NDoF) [_, Jcm] = self.rbdalgos.crba(base_transform, joint_positions) return cs.Function( "Jcm", [base_transform, joint_positions], [Jcm.array], self.f_opts )
[docs] def forward_kinematics_fun(self, frame: str) -> cs.Function: """Computes the forward kinematics relative to the specified frame Args: frame (str): The frame to which the fk will be computed Returns: H (casADi function): The fk represented as Homogenous transformation matrix """ joint_positions = cs.SX.sym("s", self.NDoF) base_transform = cs.SX.sym("H", 4, 4) H = self.rbdalgos.forward_kinematics(frame, base_transform, joint_positions) return cs.Function( "H", [base_transform, joint_positions], [H.array], self.f_opts )
[docs] def jacobian_fun(self, frame: str) -> cs.Function: """Returns the Jacobian relative to the specified frame Args: frame (str): The frame to which the jacobian will be computed Returns: J_tot (casADi function): The Jacobian relative to the frame """ joint_positions = cs.SX.sym("s", self.NDoF) base_transform = cs.SX.sym("H", 4, 4) J_tot = self.rbdalgos.jacobian(frame, base_transform, joint_positions) return cs.Function( "J_tot", [base_transform, joint_positions], [J_tot.array], self.f_opts )
[docs] def relative_jacobian_fun(self, frame: str) -> cs.Function: """Returns the Jacobian between the root link and a specified frame frames Args: frame (str): The tip of the chain Returns: J (casADi function): The Jacobian between the root and the frame """ joint_positions = cs.SX.sym("s", self.NDoF) J = self.rbdalgos.relative_jacobian(frame, joint_positions) return cs.Function("J", [joint_positions], [J.array], self.f_opts)
[docs] def jacobian_dot_fun(self, frame: str) -> cs.Function: """Returns the Jacobian derivative relative to the specified frame Args: frame (str): The frame to which the jacobian will be computed Returns: J_dot (casADi function): The Jacobian derivative relative to the frame """ base_transform = cs.SX.sym("H", 4, 4) joint_positions = cs.SX.sym("s", self.NDoF) base_velocity = cs.SX.sym("v_b", 6) joint_velocities = cs.SX.sym("s_dot", self.NDoF) J_dot = self.rbdalgos.jacobian_dot( frame, base_transform, joint_positions, base_velocity, joint_velocities ) return cs.Function( "J_dot", [base_transform, joint_positions, base_velocity, joint_velocities], [J_dot.array], self.f_opts, )
[docs] def CoM_position_fun(self) -> cs.Function: """Returns the CoM positon Returns: CoM (casADi function): The CoM position """ joint_positions = cs.SX.sym("s", self.NDoF) base_transform = cs.SX.sym("H", 4, 4) com_pos = self.rbdalgos.CoM_position(base_transform, joint_positions) return cs.Function( "CoM_pos", [base_transform, joint_positions], [com_pos.array], self.f_opts )
[docs] def bias_force_fun(self) -> cs.Function: """Returns the bias force of the floating-base dynamics equation, using a reduced RNEA (no acceleration and external forces) Returns: h (casADi function): the bias force """ base_transform = cs.SX.sym("H", 4, 4) joint_positions = cs.SX.sym("s", self.NDoF) base_velocity = cs.SX.sym("v_b", 6) joint_velocities = cs.SX.sym("s_dot", self.NDoF) h = self.rbdalgos.rnea( base_transform, joint_positions, base_velocity, joint_velocities, self.g ) return cs.Function( "h", [base_transform, joint_positions, base_velocity, joint_velocities], [h.array], self.f_opts, )
[docs] def coriolis_term_fun(self) -> cs.Function: """Returns the coriolis term of the floating-base dynamics equation, using a reduced RNEA (no acceleration and external forces) Returns: C (casADi function): the Coriolis term """ base_transform = cs.SX.sym("H", 4, 4) joint_positions = cs.SX.sym("s", self.NDoF) base_velocity = cs.SX.sym("v_b", 6) joint_velocities = cs.SX.sym("s_dot", self.NDoF) # set in the bias force computation the gravity term to zero C = self.rbdalgos.rnea( base_transform, joint_positions, base_velocity, joint_velocities, np.zeros(6), ) return cs.Function( "C", [base_transform, joint_positions, base_velocity, joint_velocities], [C.array], self.f_opts, )
[docs] def gravity_term_fun(self) -> cs.Function: """Returns the gravity term of the floating-base dynamics equation, using a reduced RNEA (no acceleration and external forces) Returns: G (casADi function): the gravity term """ base_transform = cs.SX.sym("H", 4, 4) joint_positions = cs.SX.sym("s", self.NDoF) # set in the bias force computation the velocity to zero G = self.rbdalgos.rnea( base_transform, joint_positions, np.zeros(6), np.zeros(self.NDoF), self.g ) return cs.Function( "G", [base_transform, joint_positions], [G.array], self.f_opts )
[docs] def get_total_mass(self) -> float: """Returns the total mass of the robot Returns: mass: The total mass """ return self.rbdalgos.get_total_mass()
[docs] def mass_matrix( self, base_transform: Union[cs.SX, cs.DM], joint_positions: Union[cs.SX, cs.DM] ): """Returns the Mass Matrix functions computed the CRBA Args: base_transform (Union[cs.SX, cs.DM]): The homogenous transform from base to world frame joint_positions (Union[cs.SX, cs.DM]): The joints position Returns: M (Union[cs.SX, cs.DM]): Mass Matrix """ if isinstance(base_transform, cs.MX) and isinstance(joint_positions, cs.MX): raise ValueError( "You are using casadi MX. Please use the function KinDynComputations.mass_matrix_fun()" ) [M, _] = self.rbdalgos.crba(base_transform, joint_positions) return M.array
[docs] def centroidal_momentum_matrix( self, base_transform: Union[cs.SX, cs.DM], joint_positions: Union[cs.SX, cs.DM] ): """Returns the Centroidal Momentum Matrix functions computed the CRBA Args: base_transform (Union[cs.SX, cs.DM]): The homogenous transform from base to world frame joint_positions (Union[cs.SX, cs.DM]): The joints position Returns: Jcc (Union[cs.SX, cs.DM]): Centroidal Momentum matrix """ if isinstance(base_transform, cs.MX) and isinstance(joint_positions, cs.MX): raise ValueError( "You are using casadi MX. Please use the function KinDynComputations.centroidal_momentum_matrix_fun()" ) [_, Jcm] = self.rbdalgos.crba(base_transform, joint_positions) return Jcm.array
[docs] def relative_jacobian(self, frame: str, joint_positions: Union[cs.SX, cs.DM]): """Returns the Jacobian between the root link and a specified frame frames Args: frame (str): The tip of the chain joint_positions (Union[cs.SX, cs.DM]): The joints position Returns: J (Union[cs.SX, cs.DM]): The Jacobian between the root and the frame """ if isinstance(joint_positions, cs.MX): raise ValueError( "You are using casadi MX. Please use the function KinDynComputations.relative_jacobian_fun()" ) return self.rbdalgos.relative_jacobian(frame, joint_positions).array
[docs] def jacobian_dot( self, frame: str, base_transform: Union[cs.SX, cs.DM], joint_positions: Union[cs.SX, cs.DM], base_velocity: Union[cs.SX, cs.DM], joint_velocities: Union[cs.SX, cs.DM], ) -> Union[cs.SX, cs.DM]: """Returns the Jacobian derivative relative to the specified frame Args: frame (str): The frame to which the jacobian will be computed base_transform (Union[cs.SX, cs.DM]): The homogenous transform from base to world frame joint_positions (Union[cs.SX, cs.DM]): The joints position base_velocity (Union[cs.SX, cs.DM]): The base velocity in mixed representation joint_velocities (Union[cs.SX, cs.DM]): The joint velocities Returns: Jdot (Union[cs.SX, cs.DM]): The Jacobian derivative relative to the frame """ if ( isinstance(base_transform, cs.MX) and isinstance(joint_positions, cs.MX) and isinstance(base_velocity, cs.MX) and isinstance(joint_velocities, cs.MX) ): raise ValueError( "You are using casadi MX. Please use the function KinDynComputations.jacobian_dot_fun()" ) return self.rbdalgos.jacobian_dot( frame, base_transform, joint_positions, base_velocity, joint_velocities ).array
[docs] def forward_kinematics( self, frame: str, base_transform: Union[cs.SX, cs.DM], joint_positions: Union[cs.SX, cs.DM], ): """Computes the forward kinematics relative to the specified frame Args: frame (str): The frame to which the fk will be computed base_transform (Union[cs.SX, cs.DM]): The homogenous transform from base to world frame joint_positions (Union[cs.SX, cs.DM]): The joints position Returns: H (Union[cs.SX, cs.DM]): The fk represented as Homogenous transformation matrix """ if isinstance(base_transform, cs.MX) and isinstance(joint_positions, cs.MX): raise ValueError( "You are using casadi MX. Please use the function KinDynComputations.forward_kinematics_fun()" ) return self.rbdalgos.forward_kinematics( frame, base_transform, joint_positions ).array
[docs] def jacobian(self, frame: str, base_transform, joint_positions): """Returns the Jacobian relative to the specified frame Args: base_transform (Union[cs.SX, cs.DM]): The homogenous transform from base to world frame s (Union[cs.SX, cs.DM]): The joints position frame (str): The frame to which the jacobian will be computed Returns: J_tot (Union[cs.SX, cs.DM]): The Jacobian relative to the frame """ if isinstance(base_transform, cs.MX) and isinstance(joint_positions, cs.MX): raise ValueError( "You are using casadi MX. Please use the function KinDynComputations.jacobian_fun()" ) return self.rbdalgos.jacobian(frame, base_transform, joint_positions).array
[docs] def bias_force( self, base_transform: Union[cs.SX, cs.DM], joint_positions: Union[cs.SX, cs.DM], base_velocity: Union[cs.SX, cs.DM], joint_velocities: Union[cs.SX, cs.DM], ) -> Union[cs.SX, cs.DM]: """Returns the bias force of the floating-base dynamics equation, using a reduced RNEA (no acceleration and external forces) Args: base_transform (Union[cs.SX, cs.DM]): The homogenous transform from base to world frame joint_positions (Union[cs.SX, cs.DM]): The joints position base_velocity (Union[cs.SX, cs.DM]): The base velocity in mixed representation joint_velocities (Union[cs.SX, cs.DM]): The joints velocity Returns: h (Union[cs.SX, cs.DM]): the bias force """ if ( isinstance(base_transform, cs.MX) and isinstance(joint_positions, cs.MX) and isinstance(base_velocity, cs.MX) and isinstance(joint_velocities, cs.MX) ): raise ValueError( "You are using casadi MX. Please use the function KinDynComputations.bias_force_fun()" ) return self.rbdalgos.rnea( base_transform, joint_positions, base_velocity, joint_velocities, self.g ).array
[docs] def coriolis_term( self, base_transform: Union[cs.SX, cs.DM], joint_positions: Union[cs.SX, cs.DM], base_velocity: Union[cs.SX, cs.DM], joint_velocities: Union[cs.SX, cs.DM], ) -> Union[cs.SX, cs.DM]: """Returns the coriolis term of the floating-base dynamics equation, using a reduced RNEA (no acceleration and external forces) Args: base_transform (Union[cs.SX, cs.DM]): The homogenous transform from base to world frame joint_positions (Union[cs.SX, cs.DM]): The joints position base_velocity (Union[cs.SX, cs.DM]): The base velocity in mixed representation joint_velocities (Union[cs.SX, cs.DM]): The joints velocity Returns: C (Union[cs.SX, cs.DM]): the Coriolis term """ if ( isinstance(base_transform, cs.MX) and isinstance(joint_positions, cs.MX) and isinstance(base_velocity, cs.MX) and isinstance(joint_velocities, cs.MX) ): raise ValueError( "You are using casadi MX. Please use the function KinDynComputations.coriolis_term_fun()" ) return self.rbdalgos.rnea( base_transform, joint_positions, base_velocity.reshape(6, 1), joint_velocities, np.zeros(6), ).array
[docs] def gravity_term( self, base_transform: Union[cs.SX, cs.DM], joint_positions: Union[cs.SX, cs.DM] ) -> Union[cs.SX, cs.DM]: """Returns the gravity term of the floating-base dynamics equation, using a reduced RNEA (no acceleration and external forces) Args: base_transform (Union[cs.SX, cs.DM]): The homogenous transform from base to world frame joint_positions (Union[cs.SX, cs.DM]): The joints position Returns: G (Union[cs.SX, cs.DM]): the gravity term """ if isinstance(base_transform, cs.MX) and isinstance(joint_positions, cs.MX): raise ValueError( "You are using casadi MX. Please use the function KinDynComputations.gravity_term_fun()" ) return self.rbdalgos.rnea( base_transform, joint_positions, np.zeros(6).reshape(6, 1), np.zeros(self.NDoF), self.g, ).array
[docs] def CoM_position( self, base_transform: Union[cs.SX, cs.DM], joint_positions: Union[cs.SX, cs.DM] ) -> Union[cs.SX, cs.DM]: """Returns the CoM positon Args: base_transform (Union[cs.SX, cs.DM]): The homogenous transform from base to world frame joint_positions (Union[cs.SX, cs.DM]): The joints position Returns: CoM (Union[cs.SX, cs.DM]): The CoM position """ if isinstance(base_transform, cs.MX) and isinstance(joint_positions, cs.MX): raise ValueError( "You are using casadi MX. Please use the function KinDynComputations.CoM_position_fun()" ) return self.rbdalgos.CoM_position(base_transform, joint_positions).array